# DataDownload **Repository Path**: wang-tf/DataDownload ## Basic Information - **Project Name**: DataDownload - **Description**: https://github.com/Computer-Vision-in-the-Wild/DataDownload.git - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-12-31 - **Last Updated**: 2024-12-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Data Download This repo contains scripts for downloading datasets and knowledge files of all tasks in [ELEVATER](https://computer-vision-in-the-wild.github.io/ELEVATER/). In this repo, we provide a central hub to all the datasets along with our collected knowledge files to facilitate future end-to-end training on ELEVATER benchmark. Note that: - Our software toolkit supports automatic dataset downloading, and knowledge files are a part of toolkit. - Please refer to the original license of the each dataset, and this benchmark is for academic research purpose. ## Image Classification Note: The data is on Azure Storage Blob, a SAS with Read permission is provided. Please append the following SAS at the end of each link to download: ```bash ?sp=r&st=2023-08-28T01:41:20Z&se=3023-08-28T09:41:20Z&sv=2022-11-02&sr=c&sig=Msoq5dIl%2Fve6F01edGr8jgcZUt7rtsuJ896xvstSNfM%3D ``` Install ```Shell pip install vision-datasets==0.2.17 cd classification ``` Download all datasets ```Shell python download_datasets.py --ds all ``` Download a specific dataset ```Shell python download_datasets.py --ds `DATASET_NAME` # `DATASET_NAME` should be one of ['caltech-101', 'cifar-10', 'cifar-100', 'country211', 'dtd', 'eurosat_clip', 'fer-2013', 'fgvc-aircraft-2013b-variants102', 'food-101', 'gtsrb', 'hateful-memes', 'kitti-distance', 'mnist', 'oxford-flower-102', 'oxford-iiit-pets', 'patch-camelyon', 'ping-attack-on-titan-plus', 'ping-whiskey-plus', 'rendered-sst2', 'resisc45_clip', 'stanford-cars', 'voc-2007-classification'] ``` Download knowledge files ```Shell python download_knowledge.py ``` ## Object Detection ```Shell cd detection ``` Download all datasets ``` python download.py ``` Download a specific dataset ``` python download.py --dataset_names `DATASET_NAME` ``` Knowledge files are already included in the repo ``` detection/*yaml ```