登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
11
Star
40
Fork
36
openEuler
/
open-source-summer
代码
Issues
235
Pull Requests
4
Wiki
统计
流水线
服务
JavaDoc
PHPDoc
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
多Agent协同的内核漏洞自动化复现框架
待办的
#IC46HS
任务
SeanLmax
创建于
2025-04-27 01:38
## 中文描述 --- ### 项目名称 **多Agent协同的内核漏洞自动化复现框架** --- ### 项目描述 #### (1)相关背景 随着内核漏洞复杂度的提升(如CVE-2021-43267的多阶段竞争条件漏洞),传统漏洞复现方法面临三大挑战: 1. **跨阶段漏洞建模难**:漏洞触发需精准控制内存操作、并发调度、硬件状态等多维度条件。 2. **人工经验依赖性强**:OpenEuler安全专家需耗费数周分析漏洞模式并设计PoC,尤其针对新版本kernel上线场景。 3. **工具链割裂**:现有工具(LLM/Syzkaller/PoC生成器)缺乏协同,导致信息流断裂。 #### (2)已有的工作 - Syzkaller支持覆盖率引导的模糊测试,但无法关联漏洞语义。 - GPT-4o/Deepseek-R1具备代码生成能力,但未针对内核漏洞优化。 - 学术界提出基于符号执行的漏洞复现方法(如KLEE),但效率低下。 #### (3)存在的不足 - **单点工具局限性**:LLM生成、模糊测试、PoC验证等环节孤立运行,缺乏反馈闭环。 - **动态环境感知弱**:无法根据Syzkaller运行时状态(如覆盖率/崩溃点)动态调整生成策略。 - **多模态数据处理缺失**:文本型CVE描述、代码补丁、硬件事件日志未实现联合分析。 #### (4)希望改进的点 构建多Agent协同框架,包含以下核心Agent: 1. **CVE Analysis Agent**: - 解析CVE文本(如NVD描述),提取漏洞特征(漏洞类型/触发条件/影响组件)。 - 输入:CVE-2021-43267描述 → 输出:"TIPC协议未校验msg_section大小导致堆溢出"。 2. **Syscall Conversion Agent**: - 构建CVE中kernel的历史漏洞报告(CVE+补丁diff)与Syzkaller语法文件与成功PoC案例的数据库 - 利用RAG技术,支持自然语言到syscall模板的转换(如"制造堆溢出"→`copy_from_user+kmalloc`组合)。 3. **Sequence Generation Agent**: - 根据漏洞特征生成候选syscall序列, 用于syzkaller检测特定CVE漏洞。 4. **Fuzzing Orchestration Agent**: - 动态调度Syzkaller实例,支持并行测试多组候选序列。 - 实时监控KASAN/KCSAN报告,捕获use-after-free、data race等异常。 5. **PoC Synthesis Agent**: - 将触发崩溃的syscall序列转换为可验证的C代码PoC。 #### (5)最终项目实现的目标 1. 实现5个功能Agent的协同工作流,复现10+历史漏洞(含CVE-2021-43267)。 2. 对比社区解决方案,漏洞复现效率提升8倍(平均耗时从72h降至9h)。 3. 提交多Agent框架至OpenEuler社区,支持API扩展(新增Agent接入)。 --- ### 项目难度 **进阶** --- ### 技术领域标签 **漏洞挖掘 | AI安全 | 模糊测试** --- ### 编程语言标签 **Python | Go** --- ### 项目产出要求 - **核心Agent**: - 5个标准化Agent模块(Docker容器化部署)。 - **测试验证**: - 包含5种漏洞类型的测试集(堆溢出/竞争条件/整数溢出等)。 - **文档输出**: - 《多Agent协同协议设计规范》。 - 《Agent扩展开发指南》。 --- ### 项目技术要求 - 掌握多Agent系统设计模式(如swarm、langgraph)。 - 精通Syzkaller内部机制(包括进程调度/崩溃捕获)。 - (加分项)有RAG或Agent相关开发经验。 --- ### 项目成果提交仓库 **主仓库**:https://gitee.com/openeuler/ai-fuzzing **子目录**: - `/agents`(各Agent实现代码) - `/orchestrator`(调度中间件) - `/evaluation`(测试用例与性能报告) --- ### 预估工时 **650小时** | 阶段 | 工时 | 关键产出 | |---------------------|-------|----------------------------| | Agent架构设计 | 150h | Agent职责划分、任务分解 | | 核心Agent开发 | 300h | 5个Agent功能实现 | | Syzkaller协同调度优化 | 120h | 负载均衡算法、故障恢复机制 | | 文档与社区适配 | 80h | 开发者手册、社区集成测试 | --- ### 项目备注 1. **基础设施需求**: - 大模型API接口(实现Agent功能)。 - 昇腾910C(RAG以及相关功能实现)。 2. **合规性**: - 训练数据需过滤敏感信息(如未公开漏洞细节)。 3. **社区协作**: - 与OpenEuler安全委员会联合设计Agent,社区代码合并。 - 请求OpenEuler安全委员会,建立openEuler/ai-fuzzing仓库。 --- ### 项目导师 **SeanLmax | sean.lixiang@aliyun.com** 通过多Agent协同框架,可实现漏洞复现流程的完全自动化与智能化,为OpenEuler构建下一代AI驱动的安全研究基础设施。 --- ## English Description --- ### Project Name **Multi-Agent Collaborative Framework for Automated Kernel Vulnerability Reproduction** --- ### Project Description #### (1) Context With the increasing complexity of kernel vulnerabilities (e.g., multi-stage race condition vulnerabilities like CVE-2021-43267), traditional vulnerability reproduction methods face three major challenges: 1. **Difficulty in Cross-Phase Vulnerability Modeling**: Precise control over multi-dimensional conditions (memory operations, concurrency scheduling, hardware states) is required to trigger vulnerabilities. 2. **Over-Reliance on Manual Expertise**: OpenEuler security experts spend weeks analyzing vulnerability patterns and designing PoCs, especially for newly released kernel versions. 3. **Toolchain Fragmentation**: Existing tools (LLM/Syzkaller/PoC generators) lack collaboration, leading to fragmented information flow. #### (2) Existing Work - Syzkaller supports coverage-guided fuzzing but cannot correlate vulnerability semantics. - GPT-4o/Deepseek-R1 have code generation capabilities but are not optimized for kernel vulnerabilities. - Academic methods like symbolic execution (e.g., KLEE) are proposed for vulnerability reproduction but suffer from inefficiency. #### (3) Limitations - **Isolated Tool Limitations**: LLM generation, fuzzing, and PoC validation operate independently without feedback loops. - **Weak Dynamic Environment Awareness**: Inability to dynamically adjust generation strategies based on Syzkaller runtime states (e.g., coverage/crash points). - **Missing Multimodal Data Processing**: No joint analysis of textual CVE descriptions, code patches, and hardware event logs. #### (4) Proposed Improvements Build a multi-agent collaborative framework with the following core agents: 1. **CVE Analysis Agent**: - Parses CVE texts (e.g., NVD descriptions) to extract vulnerability features (type/trigger conditions/impacted components). - Input: CVE-2021-43267 description → Output: "Heap overflow in TIPC protocol due to unvalidated msg_section size." 2. **Syscall Conversion Agent**: - Constructs a database of historical kernel vulnerability reports (CVE + patch diffs), Syzkaller syntax files, and successful PoC cases. - Uses RAG to convert natural language to syscall templates (e.g., "create heap overflow" → `copy_from_user+kmalloc` combinations). 3. **Sequence Generation Agent**: - Generates candidate syscall sequences for Syzkaller to detect specific CVE vulnerabilities. 4. **Fuzzing Orchestration Agent**: - Dynamically schedules Syzkaller instances to test multiple candidate sequences in parallel. - Monitors KASAN/KCSAN reports in real-time to capture use-after-free, data races, etc. 5. **PoC Synthesis Agent**: - Converts crash-triggering syscall sequences into verifiable C code PoCs. #### (5) Project Goals 1. Implement a collaborative workflow of 5 functional agents to reproduce 10+ historical vulnerabilities (including CVE-2021-43267). 2. Achieve 8x efficiency improvement compared to community solutions (average time reduced from 72h to 9h). 3. Submit the multi-agent framework to the OpenEuler community with API extensibility (supporting new agent integration). --- ### Project Difficulty **Advanced** --- ### Technical Domains **Vulnerability Discovery | AI Security | Fuzz Testing** --- ### Programming Languages **Python | Go** --- ### Deliverables - **Core Agents**: - 5 standardized agent modules (Docker containerized). - **Test Validation**: - Test sets covering 5 vulnerability types (heap overflow/race condition/integer overflow, etc.). - **Documentation**: - *Multi-Agent Collaboration Protocol Design Specifications*. - *Agent Extension Development Guide*. --- ### Technical Requirements - Proficiency in multi-agent system design patterns (e.g., swarm, langgraph). - Deep understanding of Syzkaller internals (process scheduling/crash capture). - (Bonus) Experience with RAG or agent development. --- ### Repository **Main Repo**: https://gitee.com/openeuler/ai-fuzzing **Subdirectories**: - `/agents` (agent implementations) - `/orchestrator` (scheduling middleware) - `/evaluation` (test cases & performance reports) --- ### Estimated Effort **650 hours** | Phase | Hours | Key Deliverables | |------------------------|-------|-------------------------------| | Agent Architecture Design | 150h | Agent role definitions, task decomposition | | Core Agent Development | 300h | Implementation of 5 agents | | Syzkaller Coordination Optimization | 120h | Load balancing algorithms, fault recovery | | Documentation & Community Integration | 80h | Developer manuals, community tests | --- ### Notes 1. **Infrastructure Requirements**: - LLM API access (for agent functionalities). - Ascend 910C (for RAG implementation). 2. **Compliance**: - Training data must filter sensitive information (e.g., unpublished vulnerability details). 3. **Community Collaboration**: - Joint design with OpenEuler Security Committee. - Request to establish the `openEuler/ai-fuzzing` repository. --- ### Mentor **SeanLmax | sean.lixiang@aliyun.com** This multi-agent collaborative framework enables fully automated and intelligent vulnerability reproduction, establishing next-generation AI-driven security research infrastructure for OpenEuler.
## 中文描述 --- ### 项目名称 **多Agent协同的内核漏洞自动化复现框架** --- ### 项目描述 #### (1)相关背景 随着内核漏洞复杂度的提升(如CVE-2021-43267的多阶段竞争条件漏洞),传统漏洞复现方法面临三大挑战: 1. **跨阶段漏洞建模难**:漏洞触发需精准控制内存操作、并发调度、硬件状态等多维度条件。 2. **人工经验依赖性强**:OpenEuler安全专家需耗费数周分析漏洞模式并设计PoC,尤其针对新版本kernel上线场景。 3. **工具链割裂**:现有工具(LLM/Syzkaller/PoC生成器)缺乏协同,导致信息流断裂。 #### (2)已有的工作 - Syzkaller支持覆盖率引导的模糊测试,但无法关联漏洞语义。 - GPT-4o/Deepseek-R1具备代码生成能力,但未针对内核漏洞优化。 - 学术界提出基于符号执行的漏洞复现方法(如KLEE),但效率低下。 #### (3)存在的不足 - **单点工具局限性**:LLM生成、模糊测试、PoC验证等环节孤立运行,缺乏反馈闭环。 - **动态环境感知弱**:无法根据Syzkaller运行时状态(如覆盖率/崩溃点)动态调整生成策略。 - **多模态数据处理缺失**:文本型CVE描述、代码补丁、硬件事件日志未实现联合分析。 #### (4)希望改进的点 构建多Agent协同框架,包含以下核心Agent: 1. **CVE Analysis Agent**: - 解析CVE文本(如NVD描述),提取漏洞特征(漏洞类型/触发条件/影响组件)。 - 输入:CVE-2021-43267描述 → 输出:"TIPC协议未校验msg_section大小导致堆溢出"。 2. **Syscall Conversion Agent**: - 构建CVE中kernel的历史漏洞报告(CVE+补丁diff)与Syzkaller语法文件与成功PoC案例的数据库 - 利用RAG技术,支持自然语言到syscall模板的转换(如"制造堆溢出"→`copy_from_user+kmalloc`组合)。 3. **Sequence Generation Agent**: - 根据漏洞特征生成候选syscall序列, 用于syzkaller检测特定CVE漏洞。 4. **Fuzzing Orchestration Agent**: - 动态调度Syzkaller实例,支持并行测试多组候选序列。 - 实时监控KASAN/KCSAN报告,捕获use-after-free、data race等异常。 5. **PoC Synthesis Agent**: - 将触发崩溃的syscall序列转换为可验证的C代码PoC。 #### (5)最终项目实现的目标 1. 实现5个功能Agent的协同工作流,复现10+历史漏洞(含CVE-2021-43267)。 2. 对比社区解决方案,漏洞复现效率提升8倍(平均耗时从72h降至9h)。 3. 提交多Agent框架至OpenEuler社区,支持API扩展(新增Agent接入)。 --- ### 项目难度 **进阶** --- ### 技术领域标签 **漏洞挖掘 | AI安全 | 模糊测试** --- ### 编程语言标签 **Python | Go** --- ### 项目产出要求 - **核心Agent**: - 5个标准化Agent模块(Docker容器化部署)。 - **测试验证**: - 包含5种漏洞类型的测试集(堆溢出/竞争条件/整数溢出等)。 - **文档输出**: - 《多Agent协同协议设计规范》。 - 《Agent扩展开发指南》。 --- ### 项目技术要求 - 掌握多Agent系统设计模式(如swarm、langgraph)。 - 精通Syzkaller内部机制(包括进程调度/崩溃捕获)。 - (加分项)有RAG或Agent相关开发经验。 --- ### 项目成果提交仓库 **主仓库**:https://gitee.com/openeuler/ai-fuzzing **子目录**: - `/agents`(各Agent实现代码) - `/orchestrator`(调度中间件) - `/evaluation`(测试用例与性能报告) --- ### 预估工时 **650小时** | 阶段 | 工时 | 关键产出 | |---------------------|-------|----------------------------| | Agent架构设计 | 150h | Agent职责划分、任务分解 | | 核心Agent开发 | 300h | 5个Agent功能实现 | | Syzkaller协同调度优化 | 120h | 负载均衡算法、故障恢复机制 | | 文档与社区适配 | 80h | 开发者手册、社区集成测试 | --- ### 项目备注 1. **基础设施需求**: - 大模型API接口(实现Agent功能)。 - 昇腾910C(RAG以及相关功能实现)。 2. **合规性**: - 训练数据需过滤敏感信息(如未公开漏洞细节)。 3. **社区协作**: - 与OpenEuler安全委员会联合设计Agent,社区代码合并。 - 请求OpenEuler安全委员会,建立openEuler/ai-fuzzing仓库。 --- ### 项目导师 **SeanLmax | sean.lixiang@aliyun.com** 通过多Agent协同框架,可实现漏洞复现流程的完全自动化与智能化,为OpenEuler构建下一代AI驱动的安全研究基础设施。 --- ## English Description --- ### Project Name **Multi-Agent Collaborative Framework for Automated Kernel Vulnerability Reproduction** --- ### Project Description #### (1) Context With the increasing complexity of kernel vulnerabilities (e.g., multi-stage race condition vulnerabilities like CVE-2021-43267), traditional vulnerability reproduction methods face three major challenges: 1. **Difficulty in Cross-Phase Vulnerability Modeling**: Precise control over multi-dimensional conditions (memory operations, concurrency scheduling, hardware states) is required to trigger vulnerabilities. 2. **Over-Reliance on Manual Expertise**: OpenEuler security experts spend weeks analyzing vulnerability patterns and designing PoCs, especially for newly released kernel versions. 3. **Toolchain Fragmentation**: Existing tools (LLM/Syzkaller/PoC generators) lack collaboration, leading to fragmented information flow. #### (2) Existing Work - Syzkaller supports coverage-guided fuzzing but cannot correlate vulnerability semantics. - GPT-4o/Deepseek-R1 have code generation capabilities but are not optimized for kernel vulnerabilities. - Academic methods like symbolic execution (e.g., KLEE) are proposed for vulnerability reproduction but suffer from inefficiency. #### (3) Limitations - **Isolated Tool Limitations**: LLM generation, fuzzing, and PoC validation operate independently without feedback loops. - **Weak Dynamic Environment Awareness**: Inability to dynamically adjust generation strategies based on Syzkaller runtime states (e.g., coverage/crash points). - **Missing Multimodal Data Processing**: No joint analysis of textual CVE descriptions, code patches, and hardware event logs. #### (4) Proposed Improvements Build a multi-agent collaborative framework with the following core agents: 1. **CVE Analysis Agent**: - Parses CVE texts (e.g., NVD descriptions) to extract vulnerability features (type/trigger conditions/impacted components). - Input: CVE-2021-43267 description → Output: "Heap overflow in TIPC protocol due to unvalidated msg_section size." 2. **Syscall Conversion Agent**: - Constructs a database of historical kernel vulnerability reports (CVE + patch diffs), Syzkaller syntax files, and successful PoC cases. - Uses RAG to convert natural language to syscall templates (e.g., "create heap overflow" → `copy_from_user+kmalloc` combinations). 3. **Sequence Generation Agent**: - Generates candidate syscall sequences for Syzkaller to detect specific CVE vulnerabilities. 4. **Fuzzing Orchestration Agent**: - Dynamically schedules Syzkaller instances to test multiple candidate sequences in parallel. - Monitors KASAN/KCSAN reports in real-time to capture use-after-free, data races, etc. 5. **PoC Synthesis Agent**: - Converts crash-triggering syscall sequences into verifiable C code PoCs. #### (5) Project Goals 1. Implement a collaborative workflow of 5 functional agents to reproduce 10+ historical vulnerabilities (including CVE-2021-43267). 2. Achieve 8x efficiency improvement compared to community solutions (average time reduced from 72h to 9h). 3. Submit the multi-agent framework to the OpenEuler community with API extensibility (supporting new agent integration). --- ### Project Difficulty **Advanced** --- ### Technical Domains **Vulnerability Discovery | AI Security | Fuzz Testing** --- ### Programming Languages **Python | Go** --- ### Deliverables - **Core Agents**: - 5 standardized agent modules (Docker containerized). - **Test Validation**: - Test sets covering 5 vulnerability types (heap overflow/race condition/integer overflow, etc.). - **Documentation**: - *Multi-Agent Collaboration Protocol Design Specifications*. - *Agent Extension Development Guide*. --- ### Technical Requirements - Proficiency in multi-agent system design patterns (e.g., swarm, langgraph). - Deep understanding of Syzkaller internals (process scheduling/crash capture). - (Bonus) Experience with RAG or agent development. --- ### Repository **Main Repo**: https://gitee.com/openeuler/ai-fuzzing **Subdirectories**: - `/agents` (agent implementations) - `/orchestrator` (scheduling middleware) - `/evaluation` (test cases & performance reports) --- ### Estimated Effort **650 hours** | Phase | Hours | Key Deliverables | |------------------------|-------|-------------------------------| | Agent Architecture Design | 150h | Agent role definitions, task decomposition | | Core Agent Development | 300h | Implementation of 5 agents | | Syzkaller Coordination Optimization | 120h | Load balancing algorithms, fault recovery | | Documentation & Community Integration | 80h | Developer manuals, community tests | --- ### Notes 1. **Infrastructure Requirements**: - LLM API access (for agent functionalities). - Ascend 910C (for RAG implementation). 2. **Compliance**: - Training data must filter sensitive information (e.g., unpublished vulnerability details). 3. **Community Collaboration**: - Joint design with OpenEuler Security Committee. - Request to establish the `openEuler/ai-fuzzing` repository. --- ### Mentor **SeanLmax | sean.lixiang@aliyun.com** This multi-agent collaborative framework enables fully automated and intelligent vulnerability reproduction, establishing next-generation AI-driven security research infrastructure for OpenEuler.
评论 (
1
)
登录
后才可以发表评论
状态
待办的
待办的
进行中
已完成
已拒绝
负责人
未设置
标签
sig/sig-OSCourse
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
未关联
master
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
1
https://gitee.com/openeuler/open-source-summer.git
git@gitee.com:openeuler/open-source-summer.git
openeuler
open-source-summer
open-source-summer
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册