# sklearn-bayes **Repository Path**: lg21c/sklearn-bayes ## Basic Information - **Project Name**: sklearn-bayes - **Description**: Python package for Bayesian Machine Learning with scikit-learn API - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-24 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Python package for Bayesian Machine Learning with scikit-learn API [![Build Status](https://travis-ci.org/AmazaspShumik/sklearn-bayes.svg?branch=master)](https://travis-ci.org/AmazaspShumik/sklearn-bayes) [![Coverage Status](https://coveralls.io/repos/github/AmazaspShumik/sklearn-bayes/badge.svg)](https://coveralls.io/github/AmazaspShumik/sklearn-bayes) ![alt text](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/figure_1.png) ![alt text](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/figure_4.png) ![alt text](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/figure_3.png) ![alt text](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/figure_2.png) ### Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn_bayes/archive/master.zip pip install --upgrade https://github.com/AmazaspShumik/sklearn_bayes/archive/master.zip ### Algorithms * [ARD Models](https://github.com/AmazaspShumik/sklearn-bayes/tree/master/skbayes/rvm_ard_models) * Relevance Vector Regression (version 2.0) [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/rvm_ard/rvm_demo.ipynb) * Relevance Vector Classifier (version 2.0) [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/rvm_ard/rvm_demo.ipynb) * Type II Maximum Likelihood ARD Linear Regression [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py) * Type II Maximum Likelihood ARD Logistic Regression [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/rvm_ard/ard_classification_demo.ipynb) * Variational Relevance Vector Regression [code](https://github.com/AmazaspShumik/sklearn_bayes/blob/master/skbayes/rvm_ard_models/vrvm.py) * Variational Relevance Vector Classification [code](https://github.com/AmazaspShumik/sklearn_bayes/blob/master/skbayes/rvm_ard_models/vrvm.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/rvm_ard/vbard_classification.ipynb) * [Decomposition Models](https://github.com/AmazaspShumik/sklearn-bayes/tree/master/skbayes/decomposition_models) * Restricted Boltzmann Machines (PCD-k / CD-k, weight decay, adaptive learning rate) [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/decomposition_models/rbm.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/decomposition_models/rbm_demo.ipynb) * Latent Dirichlet Allocation (collapsed Gibbs Sampler) [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/decomposition_models/gibbs_lda_cython.pyx), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/decomposition_models/example_lda.ipynb) * [Linear Models](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/linear_models) * Empirical Bayes Linear Regression [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/linear_models/bayes_linear.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/linear_models/bayesian_linear_regression.ipynb) * Empirical Bayes Logistic Regression (uses Laplace Approximation) [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/linear_models/bayes_logistic.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/linear_models/bayesian_logistic_regression_demo.ipynb) * Variational Bayes Linear Regression [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/linear_models/bayes_linear.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/linear_models/bayesian_linear_regression.ipynb) * Variational Bayes Logististic Regression (uses Jordan local variational bound) [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/linear_models/bayes_logistic.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/linear_models/bayesian_logistic_regression_demo.ipynb) * [Mixture Models](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/mixture_models) * Variational Bayes Gaussian Mixture Model with Automatic Model Selection [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/mixture_models/mixture.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/mixture_models/example_gaussian_mixture_with_ard.ipynb) * Variational Bayes Bernoulli Mixture Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/mixture_models/mixture.py), [tutorial](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/mixture_models/example_bernoulli_mixture.ipynb) * Dirichlet Process Bernoulli Mixture Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/mixture_models/dpmixture.py) * Dirichlet Process Poisson Mixture Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/mixture_models/dpmixture.py) * Variational Multinoulli Mixture Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/mixture_models/mixture.py) * [Hidden Markov Models](https://github.com/AmazaspShumik/sklearn-bayes/tree/master/skbayes/hidden_markov_models) * Variational Bayes Poisson Hidden Markov Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/hidden_markov_models/hmm.py), [demo](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/hidden_markov_models/examples_hmm.ipynb) * Variational Bayes Bernoulli Hidden Markov Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/hidden_markov_models/hmm.py) * Variational Bayes Gaussian Hidden Markov Model [code](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/hidden_markov_models/hmm.py), [demo](https://github.com/AmazaspShumik/sklearn-bayes/blob/master/ipython_notebooks_tutorials/hidden_markov_models/examples_hmm.ipynb) ### Contributions: There are several ways to contribute (and all are welcomed) * improve quality of existing code (find bugs, suggest optimization, etc.) * implement machine learning algorithm (it should be bayesian; you should also provide examples & notebooks) * implement new ipython notebooks with examples [![Bitdeli Badge](https://d2weczhvl823v0.cloudfront.net/AmazaspShumik/sklearn_bayes/trend.png)](https://bitdeli.com/free "Bitdeli Badge")