# Kind-PyTorch-Tutorial **Repository Path**: lg21c/Kind-PyTorch-Tutorial ## Basic Information - **Project Name**: Kind-PyTorch-Tutorial - **Description**: Kind PyTorch Tutorial for beginners - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-03 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Requirements ------------------------- - python 3.5.2 - Pytorch (http://pytorch.org/) - Numpy - matplotlib Optional -------------------------- - visdom (https://github.com/facebookresearch/visdom) Table of contents -------------------------- - [Pytorch Tensor Basics](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/01_Tensor_Basics/pytorch_tensor_basic.ipynb) - [Variable and Automatic Gradient Calculation](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/02_Variable_Autograd/Variable_Autograd.ipynb) - [Linear Regression Example (Loss & Optimizer)](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/03_Linear_Regression/Linear_Regression.ipynb) - [MNIST CNN (cpu & gpu)](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/04_MNIST_CNN/MNIST_CNN.ipynb) - [Input Pipeline & Pretrained Model](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/05_Input_Pipeline_Pretrained/Input_Pipeline_Pretrained.ipynb) - [Autoencoder & Model Save](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/06_Autoencoder_Model_Save) - [Denoising Autoencoder](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/tree/master/07_Denoising_Autoencoder) - [Simple Character RNN](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/blob/master/08_Simple_Char_RNN/Simple_Char_RNN.ipynb) - [Vanilla GAN (Layer naming & Multi gpu)](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/tree/master/09_GAN_LayerName_MultiGPU) - [InfoGAN using Least Squares loss](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/tree/master/10_InfoGAN_Least_Squares_Loss) - [Image Style Transfer using ResNet](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/tree/master/11_StyleTransfer_ResNet) - [Semantic Segmentation (U-Net & Fusion-Net)](https://github.com/GunhoChoi/Kind_PyTorch_Tutorial/tree/master/12_Semantic_Segmentation)