# mixup **Repository Path**: giteebytsl/mixup ## Basic Information - **Project Name**: mixup - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README This repo contains demo reimplementations of the CIFAR-10 training code and the GAN experiment in PyTorch based on the following paper: > Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin and David Lopez-Paz. _mixup: Beyond Empirical Risk Minimization._ https://arxiv.org/abs/1710.09412 ## CIFAR-10 The following table shows the median test errors of the last 10 epochs in a 200-epoch training session. (Please refer to Section 3.2 in the paper for details.) | Model | weight decay = 1e-4 | weight decay = 5e-4 | |:-------------------|---------------------:|---------------------:| | ERM | 5.53% | 5.18% | | _mixup_ | 4.24% | 4.68% | ## Generative Adversarial Networks (GAN) ![](gan/images/gan_results.png) ## Other implementations - [A Tensorflow implementation of mixup](https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet#cifar10-preact18-mixuppy) which reproduces our results in [tensorpack](https://github.com/ppwwyyxx/tensorpack) - [Official Facebook implementation of the CIFAR-10 experiments](https://github.com/facebookresearch/mixup-cifar10) ## Acknowledgement The CIFAR-10 reimplementation of _mixup_ is adapted from the [pytorch-cifar](https://github.com/kuangliu/pytorch-cifar) repository by [kuangliu](https://github.com/kuangliu).