# autogluon
**Repository Path**: Python_Ai_Road/autogluon
## Basic Information
- **Project Name**: autogluon
- **Description**: AutoGluon: AutoML for Text, Image, and Tabular Data
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-01-14
- **Last Updated**: 2022-01-14
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## AutoML for Text, Image, and Tabular Data
[](https://ci.gluon.ai/view/all/job/autogluon/job/master/)
[](https://pypi.org/project/autogluon/#history)
[](./LICENSE)
[](https://pepy.tech/project/autogluon)

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.
## Example
```python
# First install package from terminal:
# python3 -m pip install -U pip
# python3 -m pip install -U setuptools wheel
# python3 -m pip install autogluon # autogluon==0.3.1
from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120) # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
```
| AutoGluon Task | Quickstart | API |
| :--- | :---: | :---: |
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html) | [](https://auto.gluon.ai/stable/api/autogluon.predictor.html#module-0) |
| TextPredictor | [](https://auto.gluon.ai/stable/tutorials/text_prediction/beginner.html) | [](https://auto.gluon.ai/stable/api/autogluon.predictor.html#module-3) |
| ImagePredictor | [](https://auto.gluon.ai/stable/tutorials/image_prediction/beginner.html) | [](https://auto.gluon.ai/stable/api/autogluon.predictor.html#module-1) |
| ObjectDetector | [](https://auto.gluon.ai/stable/tutorials/object_detection/beginner.html) | [](https://auto.gluon.ai/stable/api/autogluon.predictor.html#module-2) |
## Resources
See the [AutoGluon Website](https://auto.gluon.ai/stable/index.html) for [documentation](https://auto.gluon.ai/stable/api/index.html) and instructions on:
- [Installing AutoGluon](https://auto.gluon.ai/stable/index.html#installation)
- [Learning with tabular data](https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html)
- [Tips to maximize accuracy](https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html#maximizing-predictive-performance) (if **benchmarking**, make sure to run `fit()` with argument `presets='best_quality'`).
- [Learning with text data](https://auto.gluon.ai/stable/tutorials/text_prediction/beginner.html)
- [Learning with image data](https://auto.gluon.ai/stable/tutorials/image_prediction/beginner.html)
- More advanced topics such as [Neural Architecture Search](https://auto.gluon.ai/stable/tutorials/nas/index.html)
### Scientific Publications
- [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020)
- [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020)
- [Multimodal AutoML on Structured Tables with Text Fields](https://openreview.net/pdf?id=OHAIVOOl7Vl) (*ICML AutoML Workshop*, 2021)
### Articles
- [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
- [Accurate image classification in 3 lines of code with AutoGluon](https://medium.com/@zhanghang0704/image-classification-on-kaggle-using-autogluon-fc896e74d7e8) (*Medium*, Feb 2020)
- [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
### Hands-on Tutorials
- [Practical Automated Machine Learning with Tabular, Text, and Image Data (KDD 2020)](https://jwmueller.github.io/KDD20-tutorial/)
### Train/Deploy AutoGluon in the Cloud
- [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism)
- [Running AutoGluon-Tabular on Amazon SageMaker](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb)
- [Running AutoGluon Image Classification on Amazon SageMaker](https://github.com/zhanghang1989/AutoGluon-Docker)
## Citing AutoGluon
If you use AutoGluon in a scientific publication, please cite the following paper:
Erickson, Nick, et al. ["AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data."](https://arxiv.org/abs/2003.06505) arXiv preprint arXiv:2003.06505 (2020).
BibTeX entry:
```bibtex
@article{agtabular,
title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2003.06505},
year={2020}
}
```
If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper:
Fakoor, Rasool, et al. ["Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation."](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) Advances in Neural Information Processing Systems 33 (2020).
BibTeX entry:
```bibtex
@article{agtabulardistill,
title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation},
author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
```
If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper:
Shi, Xingjian, et al. ["Multimodal AutoML on Structured Tables with Text Fields."](https://openreview.net/forum?id=OHAIVOOl7Vl) 8th ICML Workshop on Automated Machine Learning (AutoML). 2021.
BibTeX entry:
```bibtex
@inproceedings{agmultimodaltext,
title={Multimodal AutoML on Structured Tables with Text Fields},
author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex},
booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
year={2021}
}
```
## AutoGluon for Hyperparameter Optimization
AutoGluon also provides state-of-the-art tools for hyperparameter optimization, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB.
To get started, checkout our paper ["Model-based Asynchronous Hyperparameter and Neural Architecture Search"](https://arxiv.org/abs/2003.10865) arXiv preprint arXiv:2003.10865 (2020).
```bibtex
@article{abohb,
title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
journal={arXiv preprint arXiv:2003.10865},
year={2020}
}
```
## License
This library is licensed under the Apache 2.0 License.
## Contributing to AutoGluon
We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/awslabs/autogluon/blob/master/CONTRIBUTING.md) to get started.